Классификация и назначение ДВС

Классификация двигателей внутреннего сгорания

Со времени своего появления на свет, двигатели внутреннего сгорания очень сильно изменились. Производительность современных двигателей, по сравнению с двигателями времен зари двигателестроения, взлетела до космических высот. Естественно, выросло и разнообразие двигателей. Благодаря этому разнообразию, двигателям нашли бесчисленное количество способов применения. Все это разнообразие можно охватить с помощью классифицирования.

— По количеству цилиндров. Бывают одноцилиндровые, двухцилиндровые, трехцилиндровые и т.д. вплоть до 12 и даже более цилиндров, двигатели. Но все, что более 12 цилиндров, это уже редкость в автомобильной промышленности.

— По способу расположения цилиндров. Самые распространенные варианты, это рядные и V-образные двигатели. Рядные двигатели, это такие двигатели, в которых цилиндры расположены в одном ряду, друг за другом, располагаться они могут, относительно пространственного положения самого двигателя, как вертикально, так и горизонтально, а также под любым градусом наклона. V-образные двигатели, это такие двигатели, у которых имеется 2 ряда цилиндров и расположены они под углом 90 друг к другу, что напоминает букву V. Существуют также двигатели с оппозитным расположением цилиндров. Это когда цилиндры находятся друг напротив друга под углом 180 .

— По способу охлаждения. Бывают двигатели с воздушным охлаждением и с жидкостным. Воздушное охлаждение гораздо проще в производстве и обслуживать его не надо, но оно имеет много недостатков. Самый главный недостаток, это то, что двигатель обдувается потоком встречного или нагнетаемого вентилятором воздуха, из-за чего двигатель имеет разную температуру в разных местах, то есть охлаждается неравномерно. Разная температура приводит к неравномерному износу всего двигателя, что в конечном итоге сокращает срок службы такого двигателя. Да и перегреть такой двигатель, проще простого.

Второй на мой взгляд, очень важный недостаток воздушного охлаждения, это невозможность использовать тепло нагретой охлаждающей жидкости для обогрева салона автомобиля и невозможность подогревать двигатель в морозы, жидкостным предпусковым подогревателем.

Поэтому, жидкостное охлаждение, как говориться рулит. Не даром оно вытеснило воздушное охлаждение с автомобилей, за редким исключением (например грузовики марки «Татра»)

— По назначению. Бывают двигатели автомобильные, судовые, стационарные, бытовые (бензокоса, бензопила) и т.д.

— По способу осуществления рабочего цикла. Бывают 4 такта за один рабочий цикл, а бывает 2 такта. И называются такие двигатели соответственно, четырехтактные и двухтактные. Четырехтактных двигателей в мире превалирующее большинство. Этому есть ряд причин. Основные это экологичность, экономичность и надежность.

— По виду применяемого топлива. Бывают двигатели использующие для своей работы: бензин, дизельное топливо и сжатый или сжиженный газ. Также существуют битопливные и многотопливные двигатели, которые могут работать можно сказать на всем, что горит. Кроме того, есть и другие экзотические двигатели, работающие на не менее экзотических видах топлива, но о них в других статьях.

— По способу воспламенения рабочей смеси в цилиндрах. Бывают двигатели, в которых смесь поджигается искрой от свечи зажигания (бензиновые и газовые), а бывают двигатели в которых смесь поджигается сама по себе от сильного давления (дизельные двигатели)

— По способу наполнения цилиндров воздухом. Бывают атмосферные и наддувные двигатели. Атмосферные, это когда воздух попадает в цилиндры самотеком, то есть из-за разности давлений в цилиндре и во впускном тракте, создается эффект всасывания в цилиндр. Наддувные двигатели, это когда воздух силой вгоняется в цилиндр, с помощью турбонаддува или компрессора. Благодаря наддуву, удается наполнить цилиндр воздухом гораздо сильнее, чем это происходит в атмосферных двигателях, в результате чего значительно вырастает мощность двигателя, но снижается его ресурс.

Разновидности двигателей внутреннего сгорания двухтактного и четырехтактного типа

Большинство силовых установок на современных машинах относятся к четырехтактным. Двухтактные можно встретить намного реже. В двухтактниках – рабочий цикл (все 4 фазы – впуск, сжатие, рабочий ход и выпуск) приходится на всего два хода поршня между ВМТ и НМТ (верхней и нижней мертвой точкой), на один оборот коленвала. В четырехтактниках – движение происходит на каждый этап, 4 раза (вниз-вверх, вниз-вверх), 2 оборота «колена».

Схема работы 4‐х тактного двигателя

Двухтактный цикл позволяет сделать двигатель менее оборотистым и в 1,5 раза более мощным, чем такой же по объему четырехтактный, но ценой экономичности (от 15 до 30%) и большей токсичности выхлопа из-за необходимости добавлять масло непосредственно в горючее. В четырехтактном – сгорание смеси происходит более полно, исключая потери части топливной смеси, вылетающей в выпускной тракт, однако, большой процент выдаваемого крутящего момента уходит на компенсацию тепловых и мощностных потерь от вдвое большего количества ходов поршня (и необходимости тормозить-разгонять значимую массу в ЦПГ).

В итоге «экологичность» и экономичность, все же, «победили», и бензиновые двухтактники (к тому же, требовавшие более интенсивного теплоотвода) в массовом производстве силовых установок для легковушек и грузовиков уступили место четырехтактникам. А вот в танкостроении и авиации, где с потерями масла и экономичностью считаться не принято, наоборот – двигатель 2Т типа «прижился» хорошо.

Все знают, что двух и четырехтактными бывают бензиновые моторы, а четырехтактными – дизели, но не все знают, что на самом деле двухтактный дизель тоже существует. Разработанный больше 120 лет назад, он спроектирован по схеме встречного движения двух поршней в одном цилиндре. Их верхушки в ВМТ создают одну общую камеру сгорания, воспламенение смеси – тоже «одно на двоих». Двигаясь в противоположных направлениях, поршни толкают каждый свой коленвал, тем самым компенсируя вибрации друг друга. Интересно, что подобная схема допускает создание как дизельного, так и бензинового мотора: бензиновый вариант такого «оппозита» раньше устанавливался на немецкие самолеты Юнкерс, а сегодня – усовершенствованный вариант двухтактного дизеля применяется в тепловозах серий ТЭ3 и ТЭ10, в танках (движки 5ТДФ и 6ТД), на малых судах.

2‐х тактный 4‐х цилиндровый двигатель ЯАЗ−204

Принцип работы

Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.

Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение. 

Принцип работы четырехтактного двигателя

Такты четырехтактного двигателя

Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации

Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)

Это впуск, сжатие, сгорание, выпуск

На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации

Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.

  1. На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
  2. Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
  3. Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
  4. И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.

Работа четырехтактного двигателя

По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.

При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется  большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.

Принцип работы двухтактного двигателя

Такты двухтактного двигателя

Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:

  1. В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
  2. Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.

Работа двухтактного двигателя

Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.

При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.

Классификация двигателей

Конструкция ДВС бывает различной. Каждый разработчик мотора пытается внести свои улучшения, повысить мощность и экономичность, снизить выбросы вредных веществ и стоимость агрегата. Давайте посмотрим, по каким критериям классифицируют двигатели внутреннего сгорания.

По рабочему циклу

Рабочий цикл ДВС — это последовательность процессов внутри каждого цилиндра, в результате которой энергия топлива превращается в механическую энергию. Цикл может быть двухтактным или четырехтактным:

  • четырёхтактный мотор работает по «циклу Отто» или Аткинсона и включает в себя такты: впуск, сжатие, рабочий ход и выпуск;
  • в двухтактном ДВС впуск и сжатие происходят одновременно за один такт, а рабочий ход переходит в выпуск на втором такте.

По типу конструкции

По конструкции ДВС делятся на:

  • поршневые, в которых расширяющиеся при сгорании газы приводят в движение поршень, который в свою очередь толкает коленвал;
  • роторные.Растущее давление газов воздействует на ротор, соединённый с корпусом через зубчатую передачу. Роторный мотор не имеет ГРМ. Его функции выполняют впускные и выпускные окна в боковых стенках корпуса;
  • газовые турбины. В этих двигателях внутреннего сгорания газы с высокой скоростью попадают на лопатки силовой турбины, которая соединяется через редуктор с трансмиссией. Для нагнетания воздуха в мотор установлен турбинный компрессор.

Моторы могут быть без наддува, с турбокомпрессором или нагнетателем. Конструкция подбирается под назначение двигателя: будь то стационарная установка или транспорт.

По количеству цилиндров

Одно цилиндровые двигатели работают неравномерно, что не критично для лодочных моторов, мопедов и мотоциклов. Двигатель автомобиля устроен сложнее, поскольку нужна высокая мощность, а значит и большой объём цилиндра. Так, в транспорте малого класса применяются 4-цилиндровые моторы. В грузовые автомобили ставят 6- и 8-цилиндровые ДВС.

По принципу создания рабочей смеси

Принцип работы двигателя внутреннего сгорания различается способами смесеобразования:

  • внешнее: в карбюраторных моторах и в агрегатах с впрыском топлива во впускной коллектор;
  • внутреннее: в дизельных двигателях и бензиновых с непосредственным впрыском в камеру сгорания.

По расположению цилиндров

Поршневые двигатели автомобиля различаются компоновочной схемой блока цилиндров и могут представлять собой конструкцию:

  • рядную;
  • V-образную;
  • оппозитную с углом развала между поршнями 180°;
  • VR-образную;
  • W -образную.

В зависимости от компоновки моторы устанавливаются в подкапотное пространство вертикально, горизонтально или под углом к вертикальной плоскости для уменьшения высоты конструкции.

По типу топлива

Работа двигателя внутреннего сгорания происходит за счёт сжигания смеси воздуха с бензином, газа или дизеля. В качестве газового топлива ДВС применяются углеводород, сжиженный газ, смесь пропана и бутана, метан, водород.

По принципу работы ГРМ

Выше мы рассматривали, что ГРМ может быть устроен по схеме OHV, ОНС или DОНС. Выбор компоновки влияет на принцип работы двигателя. Также приводы клапанов различаются способами регулировки тепловых зазоров, которые увеличиваются в результате нагрева конструкции. Настройку зазоров проводят вручную, меняя специальные винты в коромыслах, или устанавливают гидрокомпенсаторы для автоматической регулировки.

https://youtube.com/watch?v=AA81dQadz4A

Эффективный КПД и удельный эффективный расход топлива

Экономичность работы двигателя в целом определяют эффективным КПД

ni и удельным эффективным расходом топлива ge. Эффективный КПД

оценивает степень использования теплоты топлива с учетом всех видов потерь как тепловых так и механических и представляет собой отношение теплоты Qe, эквивалентной полезной эффективной работе, ко всей затраченной теплоте Gт*Q, т.е. nm=Qe/(Gт*(Q^p)н)=Ne/(Gт*(Q^p)н) (2).

Так как механический КПД равен отношению Ne к Ni, то, подставляя в

уравнение, определяющее механический КПД nm, значения Ne и Ni из

уравнений (1) и (2), получим nm=Ne/Ni=ne/ni, откуда ne=ni/nM, т.е. эффективный КПД двигателя равен произведению индикаторного КПД на механический.

Удельный эффективный расход топлива [кг/(кВт*ч)] представляет собой отношение секундного расхода топлива Gт к эффективной мощности Ne, т.е. ge=(Gт/Ne)*3600, или [г/(кВт*ч)] ge=(Gт/Ne)*3.6*10^6.

Классификация ДВС

В ходе эволюции таких двигателей они разделились на несколько типов:

Поршневые ДВС

Для этих моторов свойственно расположение рабочей камеры в цилиндрах и преобразование тепловой энергии в работу с помощью механизма из кривошипов и шатуна. Этот механизм передаёт двигательную энергию на коленвал.

Существует деление поршневых двигателей:

  • на карбюраторные (с формированием смеси воздуха с топливом внутри карбюратора, дальнейшим впрыскиванием внутрь цилиндра и воспламенении в нём от искры, создаваемой свечой зажигания):
  • инжекторные, с подачей смеси непосредственно в коллектор впуска посредством форсунки под контролем управляющего блока на электронике, и тоже воспламенением от свечи:
  • дизельные, где смесь воздуха и топлива воспламеняется при отсутствии свечи, от сжимания воздуха, нагревающегося от давления и температуры, которая превышает температуру горения, тогда как впрыск топлива внутрь цилиндров происходит посредством форсунок.

Роторно-поршневые ДВС

В таких двигателях тепловая энергия преобразуется в работу путём вращения ротора, который имеет специальные профиль и форму. Его вращают выхлопные газы.

Газотурбинные ДВС

https://www.drom.ru/

Эти моторы отличаются тем, что тепловая энергия в них трансформируется в работу через роторное вращение. При этом имеет специальные лопатки клиновидной формы. Именно он движет турбинный вал.

Самые надёжные, неприхотливые и экономичные в вопросах расходования горючего и потребности в постоянном техническом обслуживании, — моторы поршневого типа.

По предназначению

Выделяют:

  • главные ДВС (к ним относятся, в частности, агрегаты в тракторах, машинах, а также самоходные шасси)
  • ДВС вспомогательного назначения (служащие пусковыми устройствами для главных двигателей — дизелей).

По принципу функционирования

ДВС бывают дизельными и карбюраторными.

Карбюраторные двигатели. Топливно-воздушная смесь в них образуется в карбюраторе, которая воспламеняется  от энергии электрического разряда.

В дизельных двигателях рабочая смесь получается непосредственно внутри цилиндров. Это называют внутренним смесеобразованием. Воспламенение топливной смеси происходит от высокой температуры воздуха, находящегося под высоким давлением в рабочей камере цилиндра.

По способу осуществления рабочего цикла

ДВС делятся на четырехтактные и двухтактные.

Для четырехтактных двигателей характерно последовательное чередование тактов впуска, сжатия, рабочего хода и выпуска. Это происходит в течение четырех ходов поршня и двух оборотов коленчатого вала.

У двухтактных двигателей весь процесс протекает за два такта. Поэтому рабочий цикл у них протекает за два хода поршня и один оборот коленчатого вала.

По виду применяемого топлива

ДВС разделяются на:

  • работающие на жидком топливе (дизельном, бензине)
  • -работающие на газообразном топливе (генераторный, природный и другие газы).

По числу цилиндров 

  • одноцилиндровые (например, П-350) 
  • многоцилиндровые (двух-, трех-, четырех-, шести-, восьми-, двенадцати- и шестнадцати-цилиндровые). Трех-, двенадцати- и шестнадцати-цилиндровые двигатели применяются редко.

По расположению цилиндров

рядные или линейные, когда цилиндры расположены в один ряд;

https://zen.yandex.ru/media/id/5d2f518dcfcc8600ad6de3f3/principy-raboty-dvs-5d3075d9fe289100ace1cc8a

двухрядные — V-образные, у которых два ряда цилиндров расположены под углом друг к другу;

https://qriosity.ru/car-engine/index.html

оппозитные, когда цилиндры одного ряда располагаются напротив (через 180°) второго ряда.

https://automotolife.com/

По назначению

По назначению двигатели делятся на:

  • стационарные промышленного назначения —для установок на электростанциях, насосных станциях и т. д.;
  • наземно-транспортные — тепловозные, автомобильные, тракторные, двигатели дорожных и транспортно-погрузочных машин и т. п.;
  • судовые — главные двигатели (реверсивные и нереверсивные), вспомогательные (для привода вспомогательных механизмов судовой силовой установки);
  • авиационные.

Тракторы, двигатели внутреннего сгорания и спецоборудование – Классификация ДВС

Cмотрите так же…
Тракторы, двигатели внутреннего сгорания и спецоборудование
Классификация ДВС
Мощностные и экономические показатели ДВС
Рабочие циклы двигателей
Общее устройство ДВС
Распределительный ТНВД
Схемы механизмов газораспределения
Жидкостная система охлаждения ДВС
Основные показатели работы регулятора частоты вращения коленвала ДВС
Детали клапанной группы.
Всережимный центробежный регулятор вращения коленвала ДВС
Общее устройство системы смазки ДВС
ТО системы питания дизельного ДВС
All Pages

Page 2 of 13

Классификация ДВС

ДВС – совокупность механизмов, узлов и систем, преобразующ.тепловую энергию топлива в механическую работу.

Классификация тепловых двигателей производиться на основе классификационных признаков. Они отображают назначение, особенности конструкции рабочего цикла и особенности эксплуатации различных типов дв., физическая сущность их работы и другие характерные свойства.

1)По виду применяемого топлива:

·дв., работающие на жидких топливах (бензин, керосин, дизельное топливо), были на сырой нефти, спирте.

·дв., работающие на газообразных топливах.

2)По способу осуществления рабочего цикла:

·2хтактные – полный раб. цикл в одном цилиндре осуществл. за 2 такта (хода поршня), т.е. за 1 оборот коленвала,

·4хтактные – полный раб. цикл в одном цилиндре осуществл. за 4 такта (хода поршня), т.е. за 2 оборота коленвала,

3)По способу смесеобразования:

·с внешним смесеобразованием (карбюр. и газовые дв.),

·с внутренним смесеобразованием (диз и с непоср. впрыском)

4)По способу воспламенения рабочей смеси:

·с принудительным зажиганием смеси (карбюраторные, двигатели с непосредственным впрыском легких топлив);

·с воспламенением от сжатия (дизели).

5)По числу и расположению цилиндров:

·одно-, двух-, трех- и т.д. цилиндровые;

·однорядные, двухрядные

6)По способу охлаждения цилиндров:

·с жидкостным охлаждением;

·с воздушным охлаждением.

Основные понятия и определение ДВС

(нарисовать рисунок цилиндр-поршень, ход, точки, обьемы)

Мертвыми точками назыв. такие положения КШМ, при которых совпадают по направлению оси кривошипа и шатуна. В мертвых точках поршень меняет направление своего движения. Скорость поршня в МТ равна нулю. Положение поршня, при котором он максимально удален от оси коленвала – ВМТ. Положение поршня, при котором он минимально удален от оси коленвала – НМТ.

Расстояние вдоль оси цилиндра между ВМТ и НМТ называется ходом поршня (S): S=2R. Расстояние от оси коренной шейки коленвала до оси шатунной шейки – диаметром кривошипа.Объём, освобождаемый поршнем при движении его от ВМТ до НМТ называется рабочим объёмом цилиндра (Vn): . Сумма рабочих объемов всех цилиндров двигателя, выраженная в литрах называется литражом двигателя.Объем над поршнем при его положении в ВМТ называется объемом камеры сжатия (сгорания). Объем образовавшийся над поршнем при его положении в НМТ называется полным объемом цилиндра: Va=Vc+Vn

Отношение полного объёма цилиндра к объёму камеры сжатия – степень сжатия: ε=VaVc. Степень сжатия показывает во сколько раз уменьшается объём рабочей смеси или воздуха при перемещении поршня от НМТ к ВМТ. Смесь топлива с воздухом поступающая в цилиндр при внешнем смесеобразовании – горючая смесь. Воздух или горючая смесь поступающая в цилиндр за 1 рабочий цикл – свежий заряд. Продукты сгорания, оставшиеся в цилиндре – остаточными (отработанными) газами. Смесь свежего заряда с остаточными газами – рабочая смесь. Зажигание рабочей смеси в карбюр. дв. производиться эл. искрой, возникшей между электродами свечи зажигания. В дизельных дв. рабочая смесь самовоспламеняется от температуры нагретого в цилиндре воздуха благодаря высокой степени сжатия.

Чем покрасить глушитель автомобиля

Иногда некоторые автовладельцы задаются вопросом, чем покрасить глушитель автомобиля, связанно это, как правило с двумя причинами

  1. Желанием скрыть ржавчину на глушителе
  2. Придать красивый стильный вид автомобилю

В любом случае, краска для такого вида работы будет очень дорогой, так как основное требование к таковой краске будет огромная термоустойчивость и способность выдерживать большие температурные перепады,

и даже при покупке такой краски если её использовать в районе коллектора где температура 1000 градусов Цельсия, то мало вероятно, что если она и устоит, то не изменит свой цвет от таких высоких температур. Поэтому сама идея покраски глушителя имеет место быть, но как говорится на ваше усмотрение.

Наш пост глушитель в автомобиле назначение и устройство подошел к концу, надеемся, эта статья внесла некоторую ясность в понимание устройства выхлопной системы каждого автомобиля, конечно если у вас электромобиль, то у вас попросту нет глушителя в виду того, что и нет выхлопных газов.

Типы ДВС и их классификация

Сколько марок автомобилей колесит по дорогам нашей матушки Земли? Уже трудно посчитать. А сколько двигателей понаизобретали? Это уже за пределами современной статистики. Поэтому нужна классификация двигателей внутреннего сгорания, чтобы хотя бы иметь представление о различии их конструкций и принципиальных особенностей. Так уж случилось, что в современном автомобилестроении победу одержали энергетические установки, содержащие в себе принцип внутреннего сгорания, преобразующие тепловую энергию сгоревшего топлива в цилиндре, в механическую работу. Вот мы и рассмотрим эти самые ДВС и разберемся с их классификацией.

Классификация автомобильных двигателей

Как уже упоминалось в предыдущей статье, на автомобилях наибольшее распространение получили тепловые двигатели, преобразующие энергию тепла от сгорания топлива в механическую энергию движения. Применение двигателей других типов, способных использовать для работы прочие виды энергии, ограничено рядом причин, среди которых наиболее веская – технологическая.

Все тепловые двигатели по способу подвода тепла к рабочему телу делят на два типа:

На современных автомобилях в подавляющем большинстве применяется первый тип двигателей, который отличается тем, что тепло к газообразному рабочему телу подводится непосредственно в самом двигателе путем сжигания смеси топлива с кислородом воздуха. К двигателям второго типа, использующим для работы рабочее тело, нагретое вне двигателя, относятся, например, паровые машины, которые в настоящее время почти не используются по ряду причин:

Рядом технологических причин ограничивается использование в качестве автомобильных двигателей газовых турбин, которые подразделяются на турбины внешнего сгорания и турбины внутреннего сгорания. Двигатель Стирлинга, который по принципу действия относится к двигателям внешнего сгорания, тоже не получил признания в массовом автомобильном производстве.

По конструкции тепловые двигатели классифицируют на следующие типы:

Наибольшее распространение на автомобилях получили поршневые двигатели внутреннего сгорания, которые в свою очередь классифицируются по следующим признакам:

По способу воспламенения рабочего тела :

По виду используемого топлива :

По способу смесеобразования :

К двигателям с внешним смесеобразованием (т. е. смешиванием топлива с кислородом воздуха вне цилиндра) относятся карбюраторные двигатели и двигатели с центральным и распределенным впрыском бензина, а к двигателям с внутренним смесеобразованием – дизельные и инжекторные двигатели непосредственного впрыска, в которых топливо и воздух поступают в цилиндр раздельно, и в дальнейшем смешиваются, образуя рабочую смесь.

По регулированию мощности :

При количественном регулировании мощность двигателя изменяется вследствие изменения общего количества топливовоздушной смеси, подаваемой в цилиндр. При качественном регулировании мощность изменяется количеством впрыскиваемого в цилиндр топлива при неизменном количестве подаваемого воздуха.

По характеру и последовательности термодинамических процессов в цилиндрах двигателя:

Термодинамические процессы, имеющие место в тепловых двигателях, а также пути повышения их эффективности (КПД) рассмотрены в статьях раздела «Основы гидравлики и теплотехники». Там же можно найти информацию об истории изобретения тепловых двигателей, применяемых на автомобилях.

Источник

Классификация двигателей по типу

Принцип работы силового агрегата основывается на преобразования тепловой энергии в механическую. Повторяющиеся процессы в моторе являют собой рабочий цикл двигателя. Зависимо от того, сколько поршень делает ходов, двигатели делятся на четырехтактные и двухтактные. Двигатели внутреннего сгорания, которые применяются в машинах, работают по 4-тактному циклу. Сюда входит впуск топлива, рабочий ход (туда-назад) и выпуск отработанных газов.

В двухтактном моторе за один цикл происходит всего 2 хода поршня: рабочий ход и сжатие. Наполнение цилиндров и очистка происходит во время этих 2-х тактов. У двигателей этого типа есть существенные недостатки, например высокий уровень выброса выхлопных газов. Главный минус – это высокий расход топлива, из-за чего двухтактные двигатели не используются в современных автомобилях.

Главная классификация ДВС

Все существующие ДВС разделены на 3 вида:

  • поршневые;
  • роторные;
  • газотурбинные.

В поршневых агрегатах рабочим органом является поршень. В роторных моторах используется движение ротора. В газотурбинных двигателях движение осуществляется турбиной.

В каждом из видов этих силовых установок конструктивно реализованы разные схемы преобразования тепловой энергии в полезную работу. Это принципиально отличает их друг от друга. Максимальная производительность силовых агрегатов зависит от того, каким образом преобразуется тепловая энергия. Каждый вид силовых агрегатов создан для эффективной работы в своей области применения.

Ниже подробно описаны конструкции этих агрегатов и физические процессы, происходящие в них. Отдельный раздел статьи посвящён двигателю Стирлинга. Он относится к механизмам с внешней камерой сгорания. Но принцип работы этого мотора по нескольким признакам похож на ДВС. Это часто вызывает путаницу.

Газотурбинный двигатель

Топливная смесь сгорает, и нагретый газ моментально расширяется, заставляя лопасти турбины вращаться.

Разработано два типа газотурбинных установок, отличающихся количеством рабочих валов. Агрегаты с двумя валами мощнее по сравнению с одновальными механизмами.

Газотурбинные двигатели устанавливают на машины, где необходима большая мощность силовой установки. Например, грузовые автомобили, корабли, самолёты и железнодорожные локомотивы.

Видео: Принцип работы газотурбинного двигателя

Роторный ДВС

Достоинством роторного ДВС является отсутствие шатунов, коленчатого вала и многих сопутствующих узлов. Инженеры подсчитали, что деталей в агрегате роторного типа намного меньше, чем в моторах других типов. Поэтому роторные моторы гораздо меньше других. Это является ещё одним их преимуществом.

В Японии, известной своими передовыми разработками в автомобилестроении, были сконструированы двигатели, имеющие несколько роторов. Например, японцы сконструировали агрегат, имеющий такую же мощность, что и шестипоршневой двигатель гоночного автомобиля. Но размеры многороторного движка при этом гораздо меньше.

На ранних моделях вазовских автомобилей в своё время устанавливались роторные моторы.

Роторные двигатели гораздо проще и эффективнее поршневых.  Но по непонятной причине роторные агрегаты используются очень редко.

Видео: Принцип работы роторного двигателя

Поршневой двигатель

В конструкции мотора этого вида имеется несколько цилиндров, внутри каждого из них поршни совершают возвратно-поступательные движения. В обоих концах цилиндров расположены клапаны. Открываясь, клапан пропускает порцию топливной смеси в камеру сгорания, образующуюся в цилиндре перед поршнем. В это время поршень, двигаясь вверх, сжимает смесь. В расчётный момент происходит её воспламенение.  Образующиеся газы расширяются и толкают поршень в другую сторону. Несколько таких поршней закреплены на валу П-образной конструкции. Обычно такой вал называют коленчатым. За каждое движение поршня вал проворачивается на определённую величину. Цикл движения поршня от одной стороны цилиндра до другой называется тактом. Скоординированная работа поршней заставляет коленчатый вал проворачиваться на полный оборот. Такие циклы постоянно повторяются, заставляя вращаться вал с большой скоростью.

Автомобилестроители постоянно совершенствуют поршневые двигатели. Каждое усовершенствование приводит к повышению мощности двигателя. Поршневые агрегаты являются самыми надёжными из всех видов силовых установок.

Видео: Принцип работы дизельного двигателя

Поделитесь в социальных сетях:FacebookX
Напишите комментарий