Переключение передач в планетарной коробке
В планетарной коробке передач одни детали блока планетарных шестерен удерживаются на месте, другие с геометрическим замыканием (жестко) соединены с валом турбины гидротрансформатора крутящего момента (выполняющим роль первичного вала механической планетарной передачи).
Удержание обеспечивается за счет тормозов, а соединение с геометрическим замыканием — за счет соединения многодисковых муфт.
Тормоза и многодисковые муфты в автоматической коробке передач носят общее название органы переключения или элементы переключения передач. Управление ими всегда осуществляется с помощью гидравлического давления.
Тормоза
При включении или затягивании тормозов в рамках переключения передачи солнечные шестерни, водило планетарной передачи или коронные шестерни блокируются (останавливаются), а при выключении или отпускании тормозов снова разблокируются и начинают движение,
В планетарных передачах могут использоваться ленточные или дисковые тормоза.
Ленточные тормоза
По окружности тормозного барабана расположена тормозная лента, имеющая с внутренней стороны фрикционную накладку.
У ленточного тормоза с одинарной обвивкой тормозной лентой тормозная лента обвита вокруг тормозного барабана один раз, а у ленточного тормоза с двойной обвивкой тормозной лентой — два раза, благодаря чему усилие фиксации тормозного барабана при стягивании тормозной ленты в два раза выше, чем у ленточного тормоза с одинарной обвивкой. Ленточный тормоз автоматической коробки передач Opel имеет двойную обвивку тормозной лентой. На рис. 21 «Ленточный тормоз с гидравлическим приводом механизма переключения передач автоматической коробки» изображен ленточный тормоз с одинарной обвивкой тормозной лентой.
Дисковые тормоза
В современных автоматических коробках передач используются только дисковые тормоза. На рис. 22 изображены основные детали дискового тормоза. Стальные диски (2) с наружными захватами вложены в стальную обойму (1) и имеют возможность перемещения в осевом направлении, фрикционные диски (3) с накладками соединены с блоком планетарных шестерен с помощью внутреннего зубчатого венца. Стальная обойма жестко соединена с картером коробки передач (в ZF и Opel такой дисковый тормоз получил название «неподвижной муфты»). По сравнению с ленточными тормозами дисковые тормоза могут передавать более высокие крутящие моменты и более точно регулироваться в отношении передачи усилия.
Муфты
Муфты автоматической коробки передач выполняют следующие функции:
- Соединение вала турбины (первичный вал коробки передач) с определенными частями блока планетарных шестерен и отсоединение от них;
- Передача усилия от частей одного блока планетарных шестерен на части другого.
При установлении соединения с жестким геометрическим замыканием говорят, что муфта включается или соединяется. При разъединении соединения с геометрическим замыканием говорят, что муфта выключается или разъединяется.
Как и дисковый тормоз (рис. 22) дисковая муфта состоит из стальных дисков с наружными захватами и фрикционных дисков с накладками и внутренним зубчатым венцом.
На рисунках 23 и 24 схематически изображена муфта переднего хода автоматической коробки передач Audi и VW.
Название муфта переднего хода говорит о том, что эта муфта включается на всех передачах переднего хода. Только в нейтральном положении и на передаче заднего хода муфта разъединена.
Под системой автоматического переключения понимается гидравлический привод тормозов и муфт. Для затягивания и быстрого отпускания ленточных тормозов используются круглые поршни в соответствующих цилиндрах (см. рисунок 21).
Для обеспечения соединения дисковых тормозов и муфт поршни выполнены в виде колец, как показано на рисунках 23 и 24. Отпускание тормозов и разъединение муфт выполняется с помощью тарельчатых или спиральных пружин или с помощью нескольких небольших круглых витых пружин, расположенных по окружности муфты.
Пример HTML-страницы
РЕКОМЕНДУЮ ЕЩЕ ПОЧИТАТЬ:
Пример HTML-страницы
Планетарная коробка — передача
Планетарные коробки передач с двумя степенями свободы могут быть получены путем комбинирования планетарных рядов ( см. фиг.
Планетарная коробка передач ( Гризуолд-Паккард) ( четырехступенчатая) с ускоряющей передачей и с электромагнитным управлением в сочетании с гидродинамической муфтой; б — схема коробки передач Гри-зуолд — Паккард: / — планетарный комплект с понижающей передачей; 2 — то же с повышающей передачей; 3 — то же для заднего хода; 4, 5 и 6 — электромагниты; 7 — каретка; 8 — запорная муфта.
Планетарная коробка передач состоит из нескольких планетарных передач. Размеры шестерен в этих передачах неодинаковы, поэтому коробка имеет несколько передаточных чисел. Переключение передач осуществляется особыми устройствами — фрикционами управления, которыми можно попеременно затормаживать либо зубчатые венцы ( коронные шестерни), либо солнечные шестерни.
Планетарные коробки передач служат для ступенчатого изменения передаточного отношения. Переключения производятся тормозами И фрикционными муфтами. Различают две основные схемы механизма. Схема простого планетарного механизма имеет более двух центральных колес и соответствующее число сателлитов, закрепленных на подвижных осях ( фиг.
Планетарные коробки передач служат для ступенчатого изменения передаточного отношения Переключения производятся тормозами и фрикционными муфтами.
Планетарные коробки передач, управляемые тормозами и фрикционными муфтами, являются разновидностью коробок передач с постоянным зацеплением шестерен.
Однако планетарные коробки передач имеют более высркую стоимость.
Достоинствами планетарных коробок передач по сравнению с коробками, имеющими неподвижные оси шестерен, являются возможность получения больших передаточных чисел при небольшом числе зубчатых колес, а также меньшие вес и размеры. Однако планетарные коробки передач имеют более высокую стоимость.
Валы планетарных коробок передач рассчитывают на кручение. Изгиб может иметь место при установке на валу ленточного тормоза от неуравновешенных радиальных сил.
Конструкция планетарной коробки передач аналогична рассмотренной выше и состоит из четырех планетарных рядов, управляемых с помощью четырех дисковых тормозов. Все планетарные ряды выполнены с одинарными сателлитами.
В планетарных коробках передач фрикционные элементы дисков сцепления и ленточных тормозов работают в том же масле, которое используется в качестве рабочей жидкости в гидротрансформаторе и в качестве смазочного материала зубьев шестерен планетарной передачи. При такой работе повышается их долговечность и надежность эксплуатации. Вместе с тем, работающие в масле фрикционные элементы могут передать меньший момент трения, чем диски при отсутствии смазки. Чтобы избежать этого, фрикционные диски и ленты тормозов снабжают специальными накладками из металлокерамики или других материалов, обеспечивающих постоянство сил и моментов-трения при работе их в среде смазочного материала.
В планетарных коробках передач фрикционные элементы дисков сцепления и ленточных тормозов работают в том же масле, которое используется в качестве рабочей жидкости в гидротрансформаторе и в качестве смазочного материала зубьев шестерен планетарной передачи. При такой работе повышается их долговечность и надежность эксплуатации. Вместе с тем, работающие в масле фрикционные элементы могут передать меньший момент трения, чем диски при отсутствии смазки. Чтобы избежать этого, фрикционные диски и ленты тормозов снабжают специальными накладками из металлокерамики или других материалов, обеспечивающих постоянство сил и моментов трения при работе их в среде смазочного материала.
В планетарных коробках передач нагрузки от ведущей шестерни к ведомой передаются через 2 — 4 сателлита.
Рычаг управления планетарной коробки передач располагается на нулевой колонке и имеет четыре положения: Н — нейтральное; Д — эксплуатационная ( вторая) передача; эта передача автоматически переключается на третью ( прямую) передачу в соответствии с изменением нажатия на педаль управления дросселем карбюратора и сопротивлением дороги; Я — понижающая, или первая передача; ЗХ — задний ход.
Схема гидромеханической передачи. |
Типы редукторов
Типы редукторов в соответствии с классификацией по ГОСТу классифицируют по типу механической передачи и выделяют:
- цилиндрические;
- планетарные;
- конические (коническо-цилиндрические);
- червячные;
- волновые.
Учитывая технические характеристики редуктора каждого типа рассмотрим их принцип действия и особенности более детально.
Цилиндрический редуктор
Цилиндрический редуктор – наиболее распространен в промышленности и чаще всего применяется с целью изменения параметров вращения и передачи крутящего момента. В зависимости от типа механизма и специфики конструкции применяются во многих областях, хотя наибольшее распространение получили в металлургии, машиностроении, в электрооборудовании и автомобилях. Особенности конструкции предусматривают различные вариации, обеспечивающие оптимальные рабочие условия для каждого типа механизма индивидуально. Конструкция независимо от модификации включает такие элементы: колесо, комплект подшипников, корпус, смазочную систему, шестеренку, ведущий и ведомый валы. Такой механизм очень шумный, так как во время соприкосновения зубьев валов возникает удар. Но при этом исключается, перегрев механизма из-за отсутствия трения между деталями.
Планетарный редуктор
Планетарный редуктор работает на основании передачи крутящего момента планетарным способом. Планетарная передача предполагает наличие солнечной шестерни, расположенной в центре, коронной шестерни на периферии, а также сателлитов и водила. Три сателлиты располагаются между коронной и солнечной шестеренками. Водила соединяет между собой сателлиты, которые вращаются на его осях. Крутящий момент во время движения будет увеличен во столько раз, во сколько меньше число зубьев на солнечной шестеренка в сравнении с коронной.
Конический редуктор
Конический редуктор обеспечивает передачу вращательного движения с одного вала на другой при помощи зубчатой передачи и муфт. Механизм незаменим в тех случаях, когда конструктивно требуется расположить ведомый и ведущий валы в перпендикулярном положении относительно друг друга. Показатель крутящего момента и угловая скорость регулируются при помощи изменения размеров зубчатых колес или муфты. Существуют узкие и широкие типы конических редукторов. Механизм имеет в сравнении с цилиндрическим меньший КПД и более частое заедание зубьев во время движения.
Червячный редуктор
Червячный редуктор за счет уникальной конструкции допускает вращение вала в разные стороны. Такая особенность вызывает перегрев при повышенных нагрузках, самоторможение и заедание, поэтому механизм должен эксплуатироваться при средней загруженности, не доходя до граничных показателей мощности.
Среди преимуществ выделим высокий показатель КПД до 94%, большое передаточное число при использовании одной ступени, отсутствует шум во время движения и устойчивость к неблагоприятным условиям работы.
Волновой редуктор
Волновой редуктор конструкционно отличается от других типов и включает неподвижное зубчатое колесо, гибкий элемент с зубьями и генератор волны в центре механизма. Во время вращения внутреннего элемента, гибкая шестеренка зубьями одновременно захватывает несколько зубьев зафиксированной шестерни, что создает высокую жесткость при малых люфтах. Механизм обеспечивает высокое передаточное число, имеет компактные размеры, высокая точность кинематики и плавный ход, устойчивость к повышенным рабочим нагрузкам.
Как работает планетарная передача
Почему в АКПП в подавляющем большинстве случаев применяется планетарная передача, а не валы с шестернями, как в механической коробке? Планетарная передача более компактна, она обеспечивает более быстрое и плавное переключение скоростей без разрыва в передаче мощности двигателя. Планетарные передачи отличаются долговечностью, так как нагрузка передается несколькими сателлитами, что снижает напряжения зубьев.
В одинарной планетарной передаче крутящий момент передается с помощью каких-либо (в зависимости от выбранной передачи) двух ее элементов, из которых один является ведущим, второй — ведомым. Третий элемент при этом неподвижен.
Неподвижный | Ведущий | Ведомый | Передача |
Корона | Солнце | Водило | Понижающая |
Водило | Солнце | Повышающая | |
Солнце | Корона | Водило | Понижающая |
Водило | Корона | Повышающая | |
Водило | Солнце | Корона | Реверс, понижающая |
Корона | Солнце | Реверс, повышающая |
Для получения прямой передачи необходимо зафиксировать между собой два любых элемента, которые будут играть роль ведомого звена, третий элемент при таком включении является ведущим. Общее передаточное отношение такого зацепления 1:1.
Таким образом, один планетарный механизм может обеспечить три передачи для движения вперед (понижающую, прямую и повышающую) и передачу заднего хода.
Передаточные отношения одиночного планетарного ряда не дают возможности оптимально использовать крутящий момент двигателя. Поэтому необходимо соединение двух или трех таких механизмов. Существует несколько вариантов соединения, каждое из которых носит название по имени своего изобретателя.
Механизм Симпсона
Планетарный механизм Симпсона, состоящий из двух планетарных редукторов, часто называют двойным рядом. Обе группы сателлитов, каждая из которых вращается внутри своей коронной шестерни, объединены в единый механизм общей солнечной шестерней. Планетарный ряд такой конструкции обеспечивает три ступени изменения передаточного отношения. Для получения четвертой, повышающей, передачи последовательно с рядом Симпсона установлен еще один планетарный ряд. Схема Симпсона нашла наибольшее применение в АКПП для заднеприводных автомобилей. Высокая надежность и долговечность при относительной простоте конструкции – вот ее неоспоримые достоинства.
Механизм Равинье
Планетарный ряд Равиньё иногда называют полуторным, подчеркивая этим особенности его конструкции: наличие одной коронной шестерни, двух солнечных и водила с двумя группами сателлитов. Главным преимуществом схемы Равиньё является то, что она позволяет получить четыре ступени изменения передаточного отношения редуктора
Отсутствие отдельного планетарного ряда повышающей передачи позволяет сделать редуктор коробки очень компактным, что особенно важно для трансмиссий переднеприводных автомобилей. К недостаткам следует отнести уменьшение ресурса механизма приблизительно в полтора раза по сравнению с планетарным рядом Симпсона. Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче
Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки
Это связано стем, что шестерни передачи Равиньё нагружены постоянно, на всех режимах работы коробки, в то время как элементы ряда Симпсона не нагружены во время движения на повышенной передаче. Второй недостаток – низкий КПД на пониженных передачах, приводящий к снижению разгонной динамики автомобиля и шумности работы коробки.
Коробка передач Уилсона состоит из 3 планетарных редукторов. Коронная шестерня первого планетарного редуктора, водило второго редуктора, и коронная шестерня третьего постоянно соединены между собой, образуя единое целое. Кроме того, второй и третий планетарные редукторы имеют общую солнечную шестерню, которая приводит в действие передачи переднего хода. Схема Уилсона обеспечивает 5 передач вперед и одну заднего хода.
Планетарная передача Лепелетье объединяет в себе обыкновенный планетарный ряд и пристыкованный за ним планетарный ряд Равинье. Несмотря на простоту, такая коробка обеспечивает переключение 6 передач переднего хода и одну заднего. Преимуществом схемы Лепелетье является ее простая, компактная и имеющая небольшую массу конструкция.
Конструкторы постоянно совершенствуют АКПП, увеличивая количество передач, что улучшает плавность работы и экономичность автомобиля. Современные «автоматы» могут иметь до восьми передач.
Характеристики основных разновидностей этого устройства
В конструкции планетарного ряда АКПП применяют различные типы зубчатых передач. Выделяют три основные наиболее распространенные: цилиндрические, конические и волновые.
Цилиндрические
Зубчатые механизмы передают момент между параллельными валами. В конструкцию цилиндрической передачи входит две и более пар колёс. Форма зубьев шестерней может быть прямой, косой или шевронной. Цилиндрическая схема простая в производстве и действии. Применяется в коробках передач, бортовых редукторах, приводах. Передаточное число ограничено размерами механизма: для одной колёсной пары достигает 12. КПД — 95%.
Читать
Какая КПП надежнее и лучше: робот, вариатор или автомат
Конические
Колёса в конической схеме преобразуют и передают вращение между валами, расположенными под углом от 90 до 170 градусов. Зубья нагружены неравномерно, что снижает их предельный момент и прочность. Присутствие сил на осях усложняет конструкцию опор. Для плавности соединения и большей выносливости применяют круговую форму зубьев.
Производство конических передач требует высокой точности, поэтому обходится дорого. Угловые конструкции применяются в редукторах, затворах, фрезерных станках. Передаточное отношение конических механизмов для техники средней грузоподъёмности не превышает 7. КПД — 98%.
Волновые
Во волновой передаче отсутствуют солнечная и планетные шестерни. Внутри коронного колеса установлено гибкое зубчатое колесо в форме овала. Водило выступает в качестве генератора волн, и выглядит в виде овального кулачка на специальном подшипнике.
Гибкое стальное или пластмассовое колесо под действием водила деформируется. По большой геометрической оси зубья сцепляются с короной на всю рабочую высоту, по малой оси зацепление отсутствует. Движение передаётся волной, создаваемой гибким зубчатым колесом.
Во волновых механизмах КПД растёт вместе с передаточным числом, превышающим 300. Волновая передача не работает в схемах с кинематической характеристикой ниже 20. Редуктор выдает 85% КПД, мультипликатор — 65%. Конструкция применяется в промышленных роботах, манипуляторах, авиационной и космической технике.
Планетарный механизм: назначение и устройство
В устройстве трансмиссии планетарный механизм позволяет изменять скорость, а также при необходимости направление вращения выходного вала. При этом в работе механизма можно выделить зависимость, что чем ниже будет скорость вращения выходного вала, тем большим будет на нем крутящий момент.
Итак, планетарная передача в основе имеет несколько вращающихся шестерен. Шестерни бывают следующих видов:
- солнечная шестерня;
- коронная шестерня
- сателлиты;
Само свое название планетарный механизм получил благодаря особенности размещения шестерен (подобно планетам вокруг солнца). Схема устройства предполагает, что в центре расположена солнечная шестерня, вокруг которой вращаются сателлиты. Сателлиты связаны между собой водилом, снаружи сателлитов установлена коронная шестерня. Указанные виды шестерен связаны с входным или выходным валом.
Общий принцип работы планетарной передачи состоит в том, чтобы одна из шестерен (солнечная, коронная или водило) имела жесткую фиксацию. В этом случае элемент становится передающим.
В качестве примера можно представить, если закреплена коронная шестерня, тогда входной вал передает крутящий момент на солнечную шестерню. От солнечной шестерни идет передача момента дальше на сателлиты. Сателлиты проходят по коронной шестерне и вращают водило.
Водило, в свою очередь, передает крутящий момент на выходной вал коробки. По такому принципу построена планетарная коробка передач, куда также включены специальные системы торможения (тормоза) и блокировки элементов планетарного механизма.
С учетом особенностей конструкции можно выделить два типа планетарных передач:
- в первом типе блокируется только один тип шестерен (одноступенчатая планетарная передача);
- во втором возможна блокировка разных видов шестерен (многоступенчатая планетарка);
Также планетарный ряд может быть как с закрепленным элементом, так и с дифференциальным. Во втором случае ни один из элементов не зафиксирован жестко, что позволяет изменять вращение отдельно (посредством усилий, которые прикладываются к валам). Данный механизм позволяет вращаться наименее нагруженному валу с наибольшей скоростью.
Статья в тему: Распредвал
Где используется планетарный механизм в автомобиле
Начнем с того, что планетарная передача используется в устройстве различных типов техники. Что касается автоиндустрии, чаще всего планетарный механизм лежит в основе дифференциала автомобиля.
Дифференциал стоит на каждой ведущей оси. Именно в дифференциале использован такой тип планетарной передачи, где ни один из элементов не имеет жесткой фиксации. Через входной вал момент передается на шестерню (не коронную, так как зубья расположены не вниз, а по сторонам). Шестерня передает момент на сателлиты, к которым присоединены 2 солнечные шестерни.
Принцип работы таков, что сателлиты вращаются с одинаковой скоростью, однако солнечные шестерни могут иметь разную скорость вращения, причем отличную друг от друга. Однако если сложить скорости, сумма всегда является одинаковой.
Идем далее. Планетарная передача также лежит в основе гидромеханической планетарной коробки передач АКПП. Если просто, общий принцип работы также основывается на вращении трех типов шестерен. При этом устройство намного сложнее, так как современная коробка передач требует от 5-и до 6-и передач для движения вперед. Вполне очевидно, что на одном планетарном механизме невозможно реализовать такую задачу.
В устройстве современной трансмиссии инженеры используют целый планетарный ряд АКПП. Планетарные ряды фактически являются связанными между собой несколькими планетарными механизмами. Благодаря такой конструкции можно гибко реализовать диапазон передаточного соотношения от 0.7:1 (для повышенных передач) и 4.5:1 (на пониженных). Передаточное соотношение, например, 0.7:1, означает, что на один оборот выходного вала входной вал делает 0.7 оборота.
Также в устройстве АКПП имеются специальные тормозные механизмы, которые нужны для переключения передач. Указанные механизмы (тормоза АКПП) имеют возможность притормозить вращение шестерен, а также полностью их заблокировать для подключения других элементов.
Современные гидромеханические АКПП: разновидности и особенности
Гидромеханическая коробка – сложный механизм. Каждая конкретная модель автомата с ГМП рассчитана на определенные условия эксплуатации и характеристики автомобильной техники.
Виды автоматических трансмиссий:
- многовальные;
- двухвальные;
- трехвальные;
- с планетарным редуктором.
Системы с несколькими валами более востребованы для грузовой автомобильной техники и автобусов, с использованием в конструкции:
- многодисковых муфт, которые работают в масляной ванне;
- зубчатой муфты для включения первой скорости и реверсного режима.
Эти коробки совмещают в себе несколько параллельных и совмещенных механизмов, где за четные передачи отвечает один ряд, за нечетные второй. В работе находится первый узел, пока в это время включается нужная скорость на втором.
Функции и устройство гидротрансформатора
В автоматической коробке с ГМП гидротрансформатор заменяет сцепление. Он связывает мотор с трансмиссией, исключая прямой кинематический контакт между узлами. Такой принцип действия обеспечивает плавность работы, сглаживая динамические нагрузки, избавляет от отсоединения механизма от мотора для включения нужной скорости.
Гидротрансформатор получил неофициальное название бублика за характерную тороидальную форму корпуса, с которым соединен маховик, установленный на валу мотора. Маслонасос с лопатками внутри корпуса при вращении нагнетает поток масла, вращающий реакторное колесо, а через него – турбину, передающую момент на входной вал коробки передач с ГМП.
Функции и устройство гидротрансформатора
Планетарная коробка передач
Планетарная передача передает вращение на фрикционные муфты. Применяют разные варианты конструкции этого редуктора. Основа самого простого механизма – центральная солнечная шестерня, пребывающая в зацеплении с сателлитами (вспомогательными зубчатыми колесами). Коронная шестерня передает вращение ведомому валу, воспринимающему усилие.
Переключают скорости фрикционные пакеты. Диски покрыты специальным составом, обеспечивающим сцепление разных элементов. Детали сдавливает гидравлический поршень, срабатывающий от давления трансмиссионной жидкости, распределяемой гидроблоком.
При отключении напора, пружина разжимает пакет, выключая передачу. Также конструкция включает тормозные устройства для сцепления и передачи вращающего момента.
Планетарная коробка передачФрикционы и диски
ЭБУ – электронный блок управления АКПП
Управляет трансмиссией с ГМП электроника. Электронный блок подает команды для срабатывания соответствующих электромагнитных клапанов гидроблока (соленоидов). При управлении коробкой автоматика получает исходные данные из датчиков, регистрирующих обороты, нагрузку на трансмиссионный механизм и другие параметры.
ЭБУ программируют, используя программное обеспечение с соответствующими настройками работы трансмиссионного агрегата.
Режимы работы гидротрансформатора
Движение масла в гидротрансформаторе
Перед началом движения насосное колесо вращается, реакторное и турбинное — неподвижны. Реакторное колесо закреплено на валу при помощи обгонной муфты, и поэтому может вращаться только в одну сторону. Включаем передачу, нажимаем педаль газа — обороты двигателя растут, насосное колесо набирает обороты и потоками масла раскручивает турбинное. Масло, отбрасываемое обратно турбинным колесом, попадает на неподвижные лопатки реактора, которые дополнительно «подкручивают» поток масла, увеличивая его кинетическую энергию, и направляют на лопасти насосного колеса. Таким образом с помощью реактора увеличивается крутящий момент, что и требуется при разгоне автомобиля. Когда автомобиль разогнался, и движется с постоянной скоростью, насосное и турбинное колеса вращаются примерно с одинаковыми оборотами. При этом поток масла от турбинного колеса попадает на лопасти реактора уже с другой стороны, благодаря чему реактор начинает вращаться. Увеличения крутящего момента не происходит, гидротрансформатор переходит в режим гидромуфты. Если же сопротивление движению автомобиля возросло (например, автомобиль едет в гору), скорость вращения ведущих колес, а, соответственно, и турбинного колеса падает. В этом случае потоки масла опять останавливают реактор — крутящий момент возрастает. Таким образом осуществляется автоматическое регулирование крутящего момента в зависимости от режима движения.
Отсутствие жесткой связи в гидротрансформаторе имеет свои достоинства и недостатки. Плюсы: крутящий момент изменяется плавно и бесступенчато, демпфируются крутильные колебания и рывки, передаваемые от двигателя к трансмиссии. Минусы — низкий КПД, так как часть энергии теряется при «перелопачивании масла» и расходуется на привод насоса АКПП, что, в конечном итоге, приводит к увеличению расхода топлива.
Для устранения этого недостатка в гидротрансформаторе применяется режим блокировки. При установившемся режиме движения на высших передачах автоматически включается механическая блокировка колес гидротрансформатора, то есть он начинает выполнять функцию обычного «сухого» сцепления. При этом обеспечивается жесткая непосредственная связь двигателя с ведущими колесами, как в механической трансмиссии. На некоторых АКПП включение режима блокировки предусмотрено и на низших передачах. Движение с блокировкой является наиболее экономичным режимом работы АКПП. При повышении нагрузки на ведущих колесах блокировка автоматически выключается.
При работе гидротрансформатора происходит значительный нагрев рабочей жидкости, поэтому в конструкции АКПП предусматривается система охлаждения с радиатором, который или встраивается в радиатор двигателя, или устанавливается отдельно.
Заключение
Планетарные трансмиссии в автоматических трансмиссиях доказали свою эффективность на протяжении десятилетий со времен Ford T: компактные размеры, малый вес, высокие скорости, надежность и долговечность. Планетарная схема способна передавать вращение и управлять потоками мощности, поэтому нашла применение в авиации, машиностроении и промышленности.
Чтобы не запутаться с выбором конструкции, производится точный расчет геометрии и прочности зубчатой передачи, сверяясь с допустимыми значениями. Ошибки в расчетах вызывают чрезмерную нагрузку на шестерни, поломку и износ зубьев.
Что в итоге
Как видно, планетарная АКПП и другие узлы на основе планетарного механизма активно используются в современной автоиндустрии. Более того, массовое производство автоматических планетарных коробок практически вытеснило в развитых странах механические КПП.
Благодаря удобству и качеству работы АКПП пользуются большой популярностью, продолжая вытеснять МКПП даже из бюджетного сегмента (например, китайские авто с автоматом).
Как работает коробка-автомат: классическая гидромеханическая АКПП, составные элементы, управление, механическая часть. Плюсы, минусы данного типа КПП.
Устройство и принцип работы механической коробки передач. Виды механических коробок (двухвальная, трехвальная), особенности, отличия
Понижающая (пониженная) передача: назначение передачи, особенности работы. Как пользоваться понижающей передачей и когда включать пониженную передачу.
Коробка отбора мощности (КОМ): для чего предназначена, как работает КОМ, особенности, виды и типы. Что нужно учитывать при эксплуатации данной коробки.
Дифференциал коробки передач: что это такое, устройство дифференциала, виды дифференциалов. Как работает дифференциал КПП в трансмиссии автомобиля.
Устройство полного привода, виды и типы полного привода, схема устройства привода на полноприводных авто. Полноприводные коробки, особенности.
Источник